OPTIMIZATION FOR THE BUBBLE STABILIZED LEGENDRE GALERKIN METHODS BY STEEPEST DESCENT METHOD

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori estimates for the Bubble Stabilized Discontinuous Galerkin Method

with f ∈ L2(Ω), a reaction coefficient τ > 0 and a diffusion coefficient that is piecewise constant on each element and satisfies ε(x) > ε0 > 0. We assume that there exists a constant ρ > 0 such that ε|κ1 6 ρε|κ2 for two elements satisfying ∂κ1 ∩ ∂κ2 6= / 0, i.e. in other words that ε is of bounded variation from one element to the other. The Bubble Stabilized Discontinuous Galerkin (BSDG) was ...

متن کامل

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems

In this paper we give an analysis of a bubble stabilized discontinuous Galerkin method (BSDG) for elliptic and parabolic problems. The method consists of stabilizing the numerical scheme by enriching the discontinuous finite element space elementwise by quadratic non-conforming bubbles. This approach leads to optimal convergence in the space and time discretization parameters. Moreover the dive...

متن کامل

Bubble Stabilized Discontinuous Galerkin Method for Stokes’ Problem

We propose a low order discontinuous Galerkin method for incompressible flows. Stability of the discretization of the Laplace operator is obtained by enriching the space element wise with a non-conforming quadratic bubble. This enriched space allows for a wider range of pressure spaces. We prove optimal convergence estimates and local conservation of both mass and linear momentum independent of...

متن کامل

A hybrid steepest descent method for constrained convex optimization

This paper describes a hybrid steepest descent method to decrease over time any given convex cost function while keeping the optimization variables into any given convex set. The method takes advantage of properties of hybrid systems to avoid the computation of projections or of a dual optimum. The convergence to a global optimum is analyzed using Lyapunov stability arguments. A discretized imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Honam Mathematical Journal

سال: 2014

ISSN: 1225-293X

DOI: 10.5831/hmj.2014.36.4.755